SDEs and Schrödinger Bridges Cambridge MLG Reading Group

Stratis Markou and Shreyas Padhy 21 June 2023

The Landscape

Stochastic Differential Equations

Variational Inference

Schrödinger Bridges

DDPM

Score Matching

Flow Matching

Introduction to SDEs

Ordinary Differential Equations

Continuous Normalising Flows & Neural ODEs (Chen et al. 2018)

- CNFs:
- NODEs: Represent all randomness of trajectory x_t within $x_0 \sim p(x_0)$

$$dx_t = f(x_t, t) dt$$

Scalability issues $-O(D^2)$ complexity *can improve this to O(D) with approximations (FFJORD; Grathwohl et al., 2018)

Introduction to SDEs

Stochastic Differential Equations

1.
$$w_0 = 0$$

- 2. $w_{t_2} w_{t_1} \sim \mathcal{N}(0, t_2 t_1)$
- 3. $w_{t_1} \perp w_{t_3} \mid w_{t_2}$ whenever $t_1 \leq t_2 \leq t_3$

Brownian motion samples

- Same x_0 , different x_t : no need to encode all randomenss in x_0 (Li et al., 2020).

• Large-scale generative models using SDEs (Song et al. 2020; Ho et al. 2020; Chen et al. 2023).

Stochastic Integration

Integration with SDEs is much more involved than with ODEs. An example: $x_0 = 0$ $dx_t = w_t dw_t$

$$\begin{aligned} x_t &= \lim_{N \to \infty} \sum_{n=0}^{N-1} w_{t_n} \left(w_{t_{n+1}} - w_{t_n} \right) \\ &= \lim_{N \to \infty} \frac{1}{2} \sum_{n=0}^{N-1} w_{t_{n+1}}^2 - w_{t_n}^2 - \left(w_{t_{n+1}} - w_{t_n} \right) \\ &= \frac{1}{2} (w_T^2 - w_0^2) - \lim_{N \to \infty} \frac{1}{2} \sum_{n=1}^{N} \left(w_{t_{n+1}} - w_{t_n} \right) \\ &= \frac{1}{2} w_T^2 - \frac{1}{2} t^2 \end{aligned}$$

Stochastic Differentiation

Unsurprisingly, differentiation gives different results too. Define $y_t = h(x_t, t)$ where:

$$dx_{t} = f(x_{t}, t) dt + g(x_{t}, t) dw_{t}$$
$$\frac{dy_{t}}{dt} = \frac{\partial y_{t}}{\partial t} dt + \frac{\partial y_{t}}{\partial x_{t}} dx_{t} + \frac{1}{2} \frac{\partial^{2} y_{t}}{\partial x_{t}^{2}} g(x_{t}, t)^{2} dt$$

$$dx_{t} = f(x_{t}, t) dt + g(x_{t}, t) \circ dw$$
$$\frac{dy_{t}}{dt} = \frac{\partial y_{t}}{\partial t} dt + \frac{\partial y_{t}}{\partial x_{t}} dx_{t}$$

Ito formulation

Stratonovich formulation

Fokker-Planck-Kolmogorov (FPK) equation

Given the SDE

$$dx = f(x_t, t) dt + g(x_t, t) dw_t$$

what are its marginals $p_t(x)$? No closed-form, but $p_t(x)$ follows the ODE (Särkkä and Solin; 2019):

$$\frac{dp(x_t)}{dt} = -\sum_{i=1}^{D} \frac{\partial}{\partial x_i} [p(x_t)f(x_t, t)] + \frac{1}{2} \sum_{i=1}^{D} \sum_{j=1}^{D} \frac{\partial^2}{\partial x_i \partial x_j} [p_t g_i(x_t, t)g_j(x_t, t)]$$
FPK equation

$$\frac{dx_t}{dt} = f(x_t, t) - \frac{1}{2} \left[\nabla g^2(x_t, t) + g^2(x_t, t) \nabla \log p(x_t) \right]$$

this yields the same marginals as simulating the FPK.

Further, if we sample $x_0 \sim p(x_0)$, and simulate the following ODE (Maoutsa et al. 2020; Song et al. 2020):

Probability flow ODE

Score-based generative models (Song et al. 2020)

Idea: Given a *forward* SDE that mixes the data distribution $p_0(x)$ into a simple distribution $p_T(x)$ (e.g. Gaussian)

- 1. Sample $x_T \sim p_T(x)$,
- 2. Run its *reverse* SDE to obtain $x_0 \sim p_0(x)$.

$$dx = f(x_t, t) dt + g(t) dw_t$$

Problem: The $\nabla \log p_t(x)$ term (score) does not have a nice tractable form (intuition: it depends on $p_0(x)$).

What is the form of the reverse SDE? (Andersson 1979) $dx = [f(x_t, t) - g(t)^2 \nabla \log p_t(x)] dt + g(t) d\bar{w}_t$

$$q(x_T)$$

Denoising score matching (Hyvärinen, 2005; Vincent, 2010) Reverse SDE requires access to $\nabla \log p_t(x)$. To get around this, this we will learn this from the data.

with parameters θ , define the score-matching loss

Then, under some technical conditions

$$L_{SM}(\theta) = \mathbb{E}_{x_t \sim p(x_t)} \left[\frac{1}{2} \| \nabla \log \tilde{p}_{\theta} \right]$$

and the minimiser θ^* of $L_{SM}(\theta)$ satisfies $\tilde{p}_{\theta^*}(x_t) = p(x_t)$.

This is still no good because the trace of the Hessian (second term) is computationally costly.

Denoising score matching (Vincent, 2010): It holds that $L_{DSM}(\theta) := \frac{1}{2} \mathbb{E}_{x_0 \sim p(x_0) \ x_t \sim p(x_t|x_0)} \left[\|\nabla \log \tilde{p}_{\theta}(x_0) \|_{x_t \sim p(x_t|x_0)} \right]$

- Score matching (Hyvärinen, 2005): Given a distribution $p(x_t)$ and a model distribution $p_{\theta}(x_t)$
 - $L_{SM}(\theta) = \frac{1}{2} \mathbb{E}_{x_t \sim p(x_t)} \left[\|\nabla \log \tilde{p}_{\theta}(x_t) \nabla \log p(x_t)\|_2^2 \right]$
 - $|p_{\theta}(x_t)||_2^2 + \operatorname{Tr}\left[\nabla \nabla \log \tilde{p}_{\theta}(x_t)\right] + \operatorname{const.}$

$$(x_t) - \nabla \log p(x_t | x_0) \|_2^2 = L_{SM}(\theta) + \text{const.}$$

Training score-based diffusion models

Parameterise $\nabla \log \tilde{p}_{\theta,t}(x)$ by a neural network $s_{\theta}(x, t)$, and minimise the loss

$$L_{DSM}(\theta) = \frac{1}{2} \mathbb{E}_{x_0 \sim p(x_0) \ t \sim U[0,T] \ x_t \sim p(x_t|x_t)}$$

by evaluating an unbiased Monte Carlo estimate of L_{DSM}

- 1. Sample the data distribution $x_0 \sim p(x_0)$,
- 2. Draw corrupted version of the data $x_t \sim p(x_t | x_0)$ using the forward SDE, 3. Evaluate empirical estimate of L_{DSM} and take gradients.

- So far we have not discussed how to pick the forward SDE. It's essential that: • The forward SDE mixes to our simple distribution $p(x_T | x_0) \approx p(x_T)$. • Sampling $x_t \sim p(x_t | x_0)$ is tractable and inexpensive.

We can satisfy the above by using a corruption SDE with Gaussian marginals:

$$dx_t = f(t)$$

- $|x_0| \left[\lambda(t) \| s_{\theta}(x_t, t) \nabla \log p(x_t | x_0) \|_2^2 \right].$

- t) $x dt + g(t) dw_t$

Choosing the forward (corruption) SDE

Two popular choices for the forward corruption process:

• The Variance Preserving SDE (VPSDE): $dx_t = -\frac{1}{2}\beta(t)$

with $\beta(t) \ge 0$, has the conditional distributio $p(x_t | x_0) = \mathcal{N}\left(x_t; \sqrt{1 - \alpha(t)} x_0\right)$

• The Variance Exploding SDE (VESDE):

$$dx_t =$$

with $\beta(t) \ge 0$, has the conditional distribution $p(x_t | x_0) =$

t)
$$x dt + \sqrt{\beta(t)} dw_t$$

(c)
$$\alpha(t)I$$
, where $\alpha(t) = 1 - e^{-\int_0^t \beta(t')dt'}$

$$\sqrt{\frac{d\sigma^2(t)}{dt}} \ dw_t$$

$$= \mathcal{N}\left(x_t; x_0, \sigma^2(t)I\right).$$

Sampling with score based diffusion models

Having learnt $s_{\theta}(x_t, t)$, we can use it to draw samples:

$dx_t = [f(t) - g(t)^2 s_{\theta}(t)] dt + g(t) d\bar{w}_t$

Conditional generation: classifier guidance

In conditional generation, we are interested in sampling from $p_0(x | y)$. **Classifier guidance:**

- Train a classifier $p(y | x_t)$, mapping noisy data x_t to distributions over labels y. • Use classifier to *guide* an unconditional score model:

$$dx_t = \left[f(t) - g^2(t) \nabla \log p(x_t) \right]$$
$$= \left[f(t) - g^2(t) \left[\nabla \log p(x_t) \right] \right]$$
$$\approx \left[f(t) - g^2(t) \left[s_{\theta}(x_t, t) + y_{\theta}(x_t, t) \right] \right]$$

- $|y\rangle dt + g(t) d\bar{w}_t$ $x_t + \nabla \log p(y|x_t) \right] dt + g(t) d\bar{w}_t$ $\nabla \log p(y | x_t)] dt + g(t) d\bar{w}_t$
- Can also use tempering, i.e. use $\nabla \log p(x_t) + \gamma \nabla \log p(y | x_t)$ instead, to enhance the effect of the classifier:

from Dhariwal and Nichol (2021)

Conditional generation: classifier-free guidance

Can avoid classifiers (Ho and Salimans 2021) by providing conditioning y (some of the time) at training-time:

$$L_{CF-DSM}(\theta) = \frac{1}{2} \mathbb{E}_{x_0 \sim p(x_0) \ t \sim U[0,T] \ x_t \sim p}$$

Classifier-free guidance is also amenable to tempering:

 $\sum_{p(x_t|x_0)} \left[\lambda(t) \| s_{\theta}(x_t, y, t) - \nabla \log p(x_t|x_0) \|_2^2 \right].$

The minimiser of L_{CF-DSM} yields correct samples from the conditional distribution (Batzolis et al. 2021).

from Ho and Salimans (2021)

Applications — beyond images

Generating new molecules

from Watson et al. 2022

from Corso et al. 2022

Flow matching (Lipman et al. 2022)

Idea: use ideas from score matching to scale continuous normalising flows.

Given a vector field $u_t(x)$. We can define the flow $\phi_t(x)$ of $u_t(x)$ as the solution to the ODE

$$\frac{d}{dt}\phi_t(x) =$$

 $\phi_T(x) = x$

Now suppose that $u_t(x)$ is such that

$$x_T \sim p_T(x), \quad \frac{d}{dt}\phi_t(x_T) = u_t(\phi_t(x_T)) \implies x_0 \sim p_0(x),$$

then we could draw samples by simulating the ODE. We don't have $u_t(x)$ so we will learn it:

$$\mathscr{L}_{FM}(\theta) = \frac{1}{2} \mathbb{E}_{t \sim U[\theta]}$$

 $= u_t(\phi_t(x))$

 $[0,T], x \sim p_t(x) \left[\| v_{\theta,t}(x) - u_t(x) \|_2^2 \right]$

Flow matching (Lipman et al. 2022)

Analogously to score matching, we don't have access to $u_t(x)$:

$$\mathscr{L}_{FM}(\theta) = \frac{1}{2} \mathbb{E}_{t \sim U[0,T], x_t \sim p_t(x)} \left[\|v_t(x_t) - u_t(x_t)\|_2^2 \right]$$

 $p_T(x \mid x_0) = p_T(x)$

Conditional flow matching (Lipman et al., 2022): It holds that $L_{CFM}(\theta) := \frac{1}{2} \mathbb{E}_{t \sim U[0,T], x_0 \sim p_0(x), x_t \sim p_t(x|x_0)}$

This can be easily estimated, just like the DSM loss. But how should we pick $u_t(x \mid x_0)$?

Instead, consider a conditional field $u_t(x | x_0)$ giving rise to marginal distributions $p_t(x | x_0)$ such that

$$p_0(x \mid x_0) \approx \delta(x - x_0)$$

$$\int_{0} \left[\|v_t(x_t) - u_t(x_t \,|\, x_0)\|_2^2 \right] = L_{FM}(\theta) + \text{const.}$$

Flow matching (Lipman et al. 2022)

We want: Field $u_t(x \mid x_0)$ which gives rise to

 $\phi_t(x \mid x_0) = 1 - (1 - 1)$

Model	CIFAR-10			ImageNet 32×32			ImageNet 64×64		
	NLL↓	FID↓	NFE↓	NLL↓	FID↓	NFE↓	NLL↓	FID↓	NFE↓
Ablations									
DDPM	3.12	7.48	274	3.54	6.99	262	3.32	17.36	264
Score Matching	3.16	1 9.94	242	3.56	5.68	178	3.40	19.74	441
ScoreFlow	3.09	20.78	428	3.55	14.14	1 95	3.36	24.95	60 1
Ours									
FM ^w / Diffusion	3.10	8.06	183	3.54	6.37	193	3.33	16.88	187
FM ^w / OT	2.99	6.35	142	3.53	5.02	122	3.31	14.45	138

 $p_T(x | x_0) = p_T(x), \quad p_0(x | x_0) \approx \delta(x - x_0)$

Pick a conditional flow $\phi_t(x | x_0)$, to satisfy the above. For example, consider the optimal transport flow

$$\sigma_{\min}(t'x + t'x_0, \quad t' = 1 - \frac{t}{T})$$

Flow matching formulation includes the VPSDE and VESDE probability flow ODEs as special cases.

Denoising diffusion probabilistic models (Ho et al 2021)

- 1.
- 2.

Loss Function: Minimise the cross-entropy (maximise ELBO)

$$L_{\text{CE}} = -\mathbb{E}_{q(x_0)}\log p_{\theta}(x_0) \le \mathbb{E}_{q(x_{0:T})}\left[\log \frac{q(x_{1:T} \mid x_0)}{p_{\theta}(x_{0:T})}\right] = L_{\text{VLB}}$$

Idea: Given a *forward* diffusion process that adds noise to points $x_0 \sim q_0(x)$ until Gaussian noise at $x_T \sim (0,I)$ Forward diffusion process is defined by $q(x_t | x_{t-1}) = \mathcal{N}\left(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t \mathbf{I}\right)$

Learn the reverse diffusion process from data by approximating $q(x_{t-1} \mid x_t)$ with a variational $p_{\theta}(x_{t-1} \mid x_t)$

DDPM is a discretised SDE

The forward diffusion process is $q(x_t | x_{t-1}) = \mathcal{N}\left(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t \mathbf{I}\right)$

$$x_t = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \epsilon_{t-1}, \quad t =$$

As $T \to \infty$, the discrete Markov process converges to the following SDE

$$dx = -\frac{1}{2}\beta(t)xdt + \sqrt{\beta(t)}dw$$
, which

Minimising the cross-entropy L_{CE} is equivalent to score-matching from the Song formulation.

sampling performance.

1,...,*T*

- ich is the variance-preserving SDE [Song et al 2020]!
- Noise Schedules: [Nichol and Dhariwal 2021] picking different forms of $\beta(t)$ can improve training and

Generative Modeling through a Coupling Perspective (Vargas et al 2023)

Consider the generating process $x_T \sim p_T(x_T)$, $x_0 \mid x_T \sim$ and a "reversed" process $x_0 \sim p_0(x_0)$, $x_T \mid x_0 \sim q_\phi(x_T \mid x_0)$ These processes are "reversals" if the joint distribution is equal, i.e. $p_T(x_T)p_\theta(x_0 \mid x_T) = p_0(x_0)q_\phi(x_T \mid x_0) = \pi(x_0, x_T)$ Furthermore $p_0(x_0) = \int p_{\theta}(x_0 \mid x_T) p_T(x_T) dx_T$, and $p_T(x_T) = \int q_{\phi}(x_T \mid x_0) p_0(x_0) dx_0$ For training, minimise a divergence b/w the joints, $L_D(\theta, \phi) = D\left(p_0(x_0)q_\phi(x_T \mid x_0) \mid |p_T(x_T)p_\theta(x_0 \mid x_T)\right)$ The set of minimisers associated with $L_D(\theta, \phi)$ is the set of all probabilistic couplings between p_T and p_0 $\pi \in \mathscr{P} = \left\{ \pi \ge 0, \left[\pi(x_0, x_T) dx_T = p \right] \right\}$

~
$$p_{\theta}(x_0 \mid x_T)$$
 to obtain $x_0 \sim \int p_{\theta}(x_0 \mid x_T) p_T(x_T) dx_T$
~ $q_{\phi}(x_T \mid x_0)$.

$$p_0(x_0), \int_{p_0} \pi(x_0, x_T) dx_0 = p_T(x_T) \bigg\}$$

Product Coupling $\pi = p_0 \otimes p_T$

DDPM from a Variational Perspective

$L_D(\theta, \phi) = D\left(p_0(x_0)q_\phi(x_T \mid x_0) \mid |p_T(x_T)p_\theta(x_0 \mid x_T)\right)$ Hierarchical Variational Distribution's with discrete latent variables

Let us restrict the family of distributions we consider to hierarchical models with intermediate latent variables $\{x_1, x_2, \ldots, x_{T-1}\}.$

Assume
$$q_{\phi}(x_T, x_{T-1}, \dots, x_1 \mid x_0) = \prod_{t=1}^T q_{\phi_{t-1}}(x_t \mid x_t)$$

And $p_{\theta}(x_0, x_1, \dots, x_{T-1} \mid x_T) = \prod_{t=1}^T p_{\theta_t}(x_{t-1} \mid x_t)$

Fix q_{ϕ_t} and ϕ_t to some choice of Markov process, for We can't obtain $q_{\phi}(x_T \mid x_0), p_{\theta}(x_0 \mid x_T)$ in closed-form without marginalising out $\{x_1, \dots, x_{T-1}\}$ (Data-processing $\text{Instead, consider } D_{KL}\left(p_0(x_0)q_{\phi}(x_{1:T} \mid x_0) \mid |p_T(x_T)p_{\theta}(x_{0:T-1} \mid x_T)\right) \ge D\left(p_0(x_0)q_{\phi}(x_T \mid x_0) \mid |p_T(x_T)p_{\theta}(x_0 \mid x_T)\right)$ Then we have $\theta = \arg \min L_D(\theta) = \arg \min D_{KL} \left(p_0(x_0) q_\phi(x_{1:T} \mid x_0) \mid |p_T(x_T) p_\theta(x_{0:T-1} \mid x_T) \right)$ (This is exactly DDPM)

$$x_{t-1}$$
)

Assume Gaussian

$$x_t$$
)

r example
$$q_{\phi_t}(x_t \mid x_{t-1}) = \mathcal{N}\left(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t \mathbf{I}\right)$$

SDEs from a Variational Perspective (Vargas et al 2023)

Hierarchical Variational Distributions with infinite latents 2.

Consider the extension from finite latent variables to an infinite number of latent variables.

The discrete $\{x_{0:T}\}$ now result in continuous paths x_t , and with the Gaussian assumptions we made before, the forward and reverse path dynamics of x_t from [0,T] and [T,0] are now given by SDEs -

$$dx_t = f_{\phi}(x_t)dt + \sigma dw_t, \quad x_0 \sim p_0(x_0)$$
$$dx_t = g_{\theta}(x_t)dt + \sigma d\bar{w}_t, \quad x_T \sim p_T(x_T)$$

If we assume $f_{\phi}(x_t) = -\alpha x_t$, and impose the time-reversal property for SDEs, $g_{\theta}(x_t) = -\alpha x_t - \sigma^2 \nabla p_t(x)$. For $\alpha = 0$, $g_{\theta}(x_t)$ a score-matching network \rightarrow VE-SDEs (Song et al 2021) For $\alpha > 0$, $g_{\theta}(x_t)$ a score-matching network \rightarrow VP-SDEs (Ho et al 2020, Song et al 2021) $D_{KL}\left(p_0(x_0)q_\phi(x_{1:T} \mid x_0) \mid |p_T(x_T)p_\theta(x_{0:T-1} \mid x_T)\right) \to \arg\min_{\theta} D_{KL}(\mathbb{Q}_{\phi} \mid |\mathbb{P}_{\theta}) \quad = \text{ score-matching}$

$$p_0(x_0)q_{\phi}(x_{1:T} \mid x_0) \to \mathbb{Q}_{\phi}$$
$$p_T(x_T)p_{\theta}(x_{0:T-1} \mid x_T) \to \mathbb{P}_{\theta}$$

Theoretical Guarantees of Convergence for SDEs

- Consider the SDE $dx = -\alpha x dt + \sigma dw, x_0 \sim p_{data}, x_T \sim p_{noise}$
- Assume we use a parametric model $s_{\theta}(x, t)$ to fit the score, and that the error is bounded, i.e.
 - $\| s_{\theta^*}(t,x) \nabla \log p_t(x) \| \le M$ for some $M \ge 0$
 - During sampling, we solve the reverse SDE by discretising $[T,0] \rightarrow [\gamma_T, \gamma_{T-1}, \dots, \gamma_0]$
- Then the following bounds hold in total variation [De Bortoli et. al. 2021] -
 - For $\alpha > 0$, we have $\left\| \mathscr{L}(X_0) p_{\text{data}} \right\|_{T}$
 - For $\alpha = 0$, we have $\left\| \mathscr{L}(X_0) p_{\text{data}} \right\|_{TT}$
- is solved for, $\bar{\gamma} = \max \gamma_k$, and $B_{\alpha}, C_{\alpha}, D_{\alpha} \to \infty$ as $\alpha \to \infty$.

$$\sum_{V} \leq C_{\alpha} \left(M + \bar{\gamma}^{1/2} \right) \exp \left[D_{\alpha} T \right] + B_{\alpha} \exp \left[-\alpha^{1/2} T \right]$$

$$\leq C_{0} \left(M + \bar{\gamma}^{1/2} \right) \exp \left[D_{0} T \right] + B_{0} \left(T^{-1} + T^{-1/2} \right)$$

• Where $\mathscr{L}(X_0)$ is the obtained empirical data distribution, and T is the total time interval that the SDE

Schrödinger Bridges

We wish to find a coupling density π^* such that

 $\pi^*(x_0, x_T) \in \arg\min\{D_{\mathrm{KL}}(\pi(x_0, x_T) \| r(x_0, x_T))\}$ $\pi(x_0, x_T)$

Where $r(x_0, x_T)$ is a physically or biologically motivated, reference process. Diffusion Schrodinger Bridges [Vargas et al. 2021, de Bortoli et al. 2021] -

- The reference density is path measure Q corresponding to an SDE, i.e. drift-augmented Brownian motion, OU Process
- Discrete analogue is also possible, where reference density is the Markov process $q_{\phi}(x_{0:T}) = p_0(x_0)q_{\phi}(x_{1:T} | x_0)$

$$(x_T)): \pi_{x_0} = p_0(x_0), \pi_{x_T} = p_T(x_T)$$

 $p_0(x_0)$

 $p_T(x_T)$

Solving Schrödinger Bridges

The Iterative Proportional Fitting (IPF) algorithm solves

$$\pi^*(x_0, x_T) \in \underset{\pi(x_0, x_T)}{\arg\min} \left\{ D_{\mathrm{KL}}(\pi(x_0, x_T) \| r(x_0, x_T)) : \pi_{x_0} = \mu \right\}$$

1. Choose
$$\pi_0 = r(x_0, x_t)$$

2. Perform $\pi^{2n+1} = \arg \min \left\{ \text{KL} \left(\pi \mid \pi^{2n} \right) : \pi_{x_T} = p_T \right\}$
3. Perform $\pi^{2n+2} = \arg \min \left\{ \text{KL} \left(\pi \mid \pi^{2n+1} \right) : \pi_{x_0} = p_0 \right\}$

Remember the coupling loss $L_D(\theta, \phi) = D\left(p_0(x_0)q_\phi(x_T \mid x_0) \mid |p_T(x_T)p_\theta(x_0 \mid x_T)\right)$

Proposition [Vargas et. al 2023]: If the coupling loss is solved using Expectation-Maximisation (EM) with a KL divergence as follows:

$$\theta_{n+1} = \arg\min_{\theta} \mathscr{L}_{D_{\mathrm{KL}}} (\phi_n, \theta),$$

$$\phi_{n+1} = \arg\min_{\phi} \mathscr{L}_{D_{\mathrm{KL}}} (\phi, \theta_{n+1})$$

Then, for a suitable initialisation of IPF, the IPF iterates agree with the EM iterations

$$\pi^{n} = q^{\phi_{(n-1)/2}}(x_{T} \mid x_{0})p_{0}(x_{0}), \text{ for } n \text{ odd}$$
$$\pi^{n} = p^{\theta_{n/2}}(x_{0} \mid x_{T})p_{T}(x_{T}), \text{ for } n \text{ even}$$

Solving Schrodinger's Bridges

1. The first step of a SB solves the score-matching objective exactly, i.e. $\theta^* = \arg \min \mathscr{L}_{D_{KI}}(\phi_n, \theta)$

- 2. The second step "fixes" the denoising process so that the constraint $\pi_{x_0} = p_0(x_0)$ is enforced.
- 4. The fourth step "fixes" the denoising process again so that the constraint $\pi_{x_0} = p_0(x_0)$ is enforced.

A unifying perspective of variational inference, diffusions, and Optimal Transport

- [Vargas et al 2023] unify many formulations under the variational inference view
 - Score-based generative modelling [Song et al 2021, Ho et al 2021]
 - Score-based sampling
 - ergodic drift [Vargas et al 2023, Berner et al 2022]
 - Follmer drift [Follmer, 1984; Vargas et al., 2021a; Zhang and Chen, 2021a; Huang et al., 2021b]
 - Domain adaptation and stochastic filtering [Reich and Cotter, 2015]
 - Score-based annealed flows [Heng et al., 2015; 2020; Arbel et al., 2021; Doucet et al., 2022]
 - Schrodinger Bridges & Entropic Optimal Transport [de Bortoli et al 2021; Vargas et al 2021]

References

References I

[1] Song, Yang, et al. "Score-based generative modeling through stochastic differential equations." arXiv preprint arXiv:2011.13456 (2020). [2] Vargas, Francisco, et al. "Transport, Variational Inference and Diffusions", ICML 2023 Workshop Frontiers4LCD. [3] De Bortoli, Valentin, et al. "Diffusion Schrödinger bridge with applications to score-based generative modeling." Advances in Neural

Information Processing Systems 34 (2021): 17695-17709."

Vargas, F., Thodoroff, P., Lamacraft, A., & Lawrence, N. (2021). Solving Schrödinger bridges via maximum likelihood. Entropy, 23(9), 4 1134. [5] Chen, R. T., Rubanova, Y., Bettencourt, J., & Duvenaud, D. K. (2018). Neural ordinary differential equations. Advances in neural information processing systems, 31. [6] Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 33, 6840-6851. [7] Pavon, M., Tabak, E. G., & Trigila, G. (2018). The data-driven Schroedinger bridge. In arXiv [math.OC]. arXiv. http://arxiv.org/abs/ 1806.01364 [8] Song, Y., & Ermon, S. (2019). Generative Modeling by Estimating Gradients of the Data Distribution. In arXiv [cs.LG]. arXiv. http:// arxiv.org/abs/1907.05600 [9] Nichol, A., & Dhariwal, P. (2021). Improved Denoising Diffusion Probabilistic Models. In arXiv [cs.LG]. arXiv. http://arxiv.org/abs/ 2102.09672 [10] Maoutsa, D., Reich, S., & Opper, M. (2020). Interacting particle solutions of fokker-planck equations through gradient-log-

density estimation. *Entropy*, 22(8), 802.

References II

[1] Hyvärinen, A., & Dayan, P. (2005). Estimation of non-normalized statistical models by score matching. *Journal of Machine Learning Research*, 6(4).

[2] Vincent, P. (2011). A connection between score matching and denoising autoencoders. *Neural computation*, 23(7), 1661-1674. [3] Dhariwal, P., & Nichol, A. (2021). Diffusion models beat gans on image synthesis. Advances in Neural Information Processing

Systems, *34*, 8780-8794.

[4] Ho, J., & Salimans, T. (2022). Classifier-free diffusion guidance. *arXiv preprint arXiv:2207.12598*.

[5] Lipman, Y., Chen, R. T., Ben-Hamu, H., Nickel, M., & Le, M. (2022). Flow matching for generative modeling. *arXiv preprint arXiv:2210.02747*.

[6] Berner, J., Richter, L., & Ullrich, K. (2022). An optimal control perspective on diffusion-based generative modeling. *arXiv preprint arXiv:2211.01364*.

[7] Föllmer, H., & Wakolbinger, A. (1986). Time reversal of infinite-dimensional diffusions. Stochastic processes and their *applications*, 22(1), 59-77.

[8] Vargas, F., Ovsianas, A., Fernandes, D., Girolami, M., Lawrence, N. D., & Nüsken, N. (2023). Bayesian learning via neural Schrödinger–Föllmer flows. *Statistics and Computing*, 33(1), 3.

[9] Zhang, Q., & Chen, Y. (2021). Path integral sampler: a stochastic control approach for sampling. arXiv preprint arXiv:2111.15141. [10] Huang, J., Jiao, Y., Kang, L., Liao, X., Liu, J., & Liu, Y. (2021). Schrödinger-Föllmer sampler: sampling without

ergodicity. arXiv preprint arXiv:2106.10880.

References III

- without ergodicity. arXiv preprint arXiv:2106.10880.
- [2] Reich, S., & Cotter, C. (2015). Probabilistic forecasting and Bayesian data assimilation. Cambridge University Press.
- Bayesian computation. Journal of the Royal Statistical Society Series B: Statistical Methodology, 83(1), 156-187.
- [4] Heng, J., Bishop, A. N., Deligiannidis, G., & Doucet, A. (2020). Controlled sequential monte carlo.
- Conference on Machine Learning (pp. 318-330). PMLR.

[1] Huang, J., Jiao, Y., Kang, L., Liao, X., Liu, J., & Liu, Y. (2021). Schrödinger-Föllmer sampler: sampling

[3] Heng, J., Doucet, A., & Pokern, Y. (2021). Gibbs flow for approximate transport with applications to

[5] Arbel, M., Matthews, A., & Doucet, A. (2021, July). Annealed flow transport monte carlo. In International

[6] Vargas, F., Grathwohl, W., & Doucet, A. (2023). Denoising diffusion samplers. arXiv preprint arXiv:2302.13834.

Proving the Existence of the Inverse SDE

Idea: Given a *forward* SDE that mixes the data distribution $p_0(x)$ into a simple distribution $p_T(x)$ (e.g. Gaussian) $dx = f(x_t, t) dt + g(t) dw_t$

We wish to enforce $p_{t|t+\delta}(x \mid y)p_{t+\delta}(y) = p_{t+\delta|t}(y \mid x)p_t(x)$ **5**²) ²) Take the log on both sides and rearrange $^{+}(x) \|^{2} + \|f^{-}(y)\|^{2} = \sigma^{2} \left(\ln p_{t+\delta}(y) - \ln p_{t}(x)\right)$

$$p_{t|t+\delta}(x \mid y) = \mathcal{N}\left(x \mid y + f^{+}(y)\delta, \delta\sigma\right)$$
$$p_{t+\delta|t}(y \mid x) = \mathcal{N}\left(x \mid y + f^{-}(y)\delta, \delta\sigma\right)$$

$$(f^+(x) + f^-(y))^\top (y - x) + \delta \left(\| f^+ \right)^\top$$

Taking the limit $\delta \rightarrow 0$

 $(f^+(x) + f^-(y))'(y - x) = \sigma^2 \left(\ln p_t(y) - \ln p_t(x) \right)$

 $dx = [f(x_t, t) - g(t)^2 \nabla \log p_t(x)] dt + g(t) d\bar{w}_t$ **Proof Sketch:** Let us assume a discretised form of the forward SDE, $x_{t_{k+1}} = x_{t_k} + f(x_{t_k}, t_k)\delta t + g(t_k)\epsilon_{t_k}\sqrt{\delta t}$

Proving the Existence of the Inverse SDE Proof Sketch:

Taking the limit $\delta \rightarrow 0$

$$(f^+(x) + f^-(y))^\top (y - x) = \sigma^2 (\ln p_t)$$

Applying Taylor's Expansion

$$\left(f^+(x) + f^-(y) \right)^\top (y - x) = \ln p_t(y) -$$
$$= \sigma^2 \nabla \ln p_t(y) -$$

Simplifying, we get

$$f^+(y) + f^-(y) = \sigma^2 \nabla \ln p_t(y)$$

Therefore, we get

$$\mathrm{d}Y_t = \left(\sigma_t^2 \nabla \ln p_{T-t}\left(Y_t\right) - f^+\left(Y_t, T\right)\right)$$

 $_{t}(y) - \ln p_{t}(x) \big)$

 $-\ln p_t(x)$ $p_t(x)^{\mathsf{T}}(y-x) + h(y)^{\mathsf{T}}(y-x)$

(-t) $dt + \sigma_t dW_t$